The Abel Lemma and the q-Gosper Algorithm

نویسندگان

  • Vincent Y. B. Chen
  • William Y. C. Chen
  • Nancy S. S. Gu
چکیده

Chu has recently shown that the Abel lemma on summations by parts can serve as the underlying relation for Bailey’s 6ψ6 bilateral summation formula. In other words, the Abel lemma spells out the telescoping nature of the 6ψ6 sum. We present a systematic approach to compute Abel pairs for bilateral and unilateral basic hypergeometric summation formulas by using the q-Gosper algorithm. It is demonstrated that Abel pairs can be derived from Gosper pairs. This approach applies to many classical summation formulas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABEL ’ S LEMMA AND IDENTITIES ON HARMONIC NUMBERS Hai

Recently, Chen, Hou and Jin used both Abel’s lemma on summation by parts and Zeilberger’s algorithm to generate recurrence relations for definite summations. They also proposed the Abel-Gosper method to evaluate some indefinite sums involving harmonic numbers. In this paper, we use the Abel-Gosper method to prove an identity involving the generalized harmonic numbers. Special cases of this resu...

متن کامل

Abel’s Lemma and Identities on Harmonic Numbers

Recently, Chen, Hou and Jin used both Abel’s lemma on summation by parts and Zeilberger’s algorithm to generate recurrence relations for definite summations. Meanwhile, they proposed the Abel-Gosper method to evaluate some indefinite sums involving harmonic numbers. In this paper, we use the Abel-Gosper method to prove an identity involving the generalized harmonic numbers. Special cases of thi...

متن کامل

On the Gosper-Petkovs(ek representation of rational functions

We show that the uniqueness of the Gosper-Petkovšek representation of rational functions can be utilized to give a simpler version of Gosper’s algorithm. This approach also applies to Petkovšek’s generalization of Gosper’s algorithm, and its q-analogues by Abramov-Paule-Petkovšek and Böing-Koepf.

متن کامل

A Method to Approximate Solution of the First Kind Abel Integral Equation Using Navot's Quadrature and Simpson's Rule

In this paper, we present a method for solving the rst kind Abel integral equation. In thismethod, the rst kind Abel integral equation is transformed to the second kind Volterraintegral equation with a continuous kernel and a smooth deriving term expressed by weaklysingular integrals. By using Sidi's sinm - transformation and modied Navot-Simpson'sintegration rule, an algorithm for solving this...

متن کامل

Length of the continued logarithm algorithm on rational inputs

The continued logarithm algorithm was introduced by Gosper around 1978, and recently studied by Borwein, Calkin, Lindstrom, and Mattingly. In this note I show that the continued logarithm algorithm terminates in at most 2 log2 p+O(1) steps on input a rational number p/q ≥ 1. Furthermore, this bound is tight, up to an additive constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008